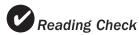
## **Chemical Equations**

Textbook pages 202-215


#### Before You Read

What do you already know about chemical equations? Write your ideas in the lines below.



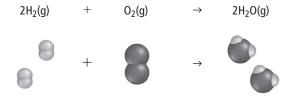
#### Create a Table

Create a table that outlines the steps you need to take when writing and balancing chemical equations



| List the four states of |  |
|-------------------------|--|
| matter.                 |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |




| What does the law of conservation of mass state? |
|--------------------------------------------------|
|                                                  |

## How are chemical changes and chemical reactions linked?

A chemical change is a change in the arrangements and connections between ions and atoms. Chemical change always involves the conversion of pure substances (elements and compounds) called **reactants** into other pure substances called **products**, which have different properties than the reactants. One or more chemical changes that occur at the same time are called a **chemical reaction**.

#### How is a chemical reaction represented?

A chemical reaction can be represented using a **chemical equation**. A chemical equation may be written in words (a **word equation**) or in chemical symbols (a **symbolic equation**). In a chemical equation, the reactants are written to the left of an arrow and the products are written to the right. The symbols for **states of matter** may be used to show whether each reactant or product is solid (s), liquid (l), gas (g), or aqueous (aq).



Chemical reactions obey the law of **conservation of mass**. Atoms are neither destroyed nor produced in a chemical reaction. The total mass of the products is always equal to the total mass of the reactants.

**Section** 

continued

### How are chemical equations written and balanced?

Date

Chemical equations are written and balanced through a series of steps, as shown below.

1. Write a word equation: The simplest form of a chemical equation is a word equation. A word equation provides the names of the reactants and products in a chemical reaction. It provides the starting point for writing and balancing chemical equations.

word equation: methane + oxygen → water + carbon dioxide

**2.** Write a **skeleton equation**: A **skeleton equation** replaces the names of the reactants and products in a word equation with formulas. However, it does not show the correct proportions in which the reactants will actually combine and the products will be produced.

A skeleton equation is not balanced.

skeleton equation:  $CH_4 + O_2 \rightarrow H_2O + CO_2$ 

**3.** Write a balanced equation: A balanced chemical **equation** shows the identities of each pure substance involved in the reaction, as well as the number of atoms of each element on both sides of a chemical equation. Chemical equations are balanced using the lowest whole number **coefficients**. These are integers placed in front of the formula or chemical symbol for each product and reactant. The number of atoms after a chemical reaction is the same as it was before a chemical reaction. You can use this information to determine the coefficients that balance the equation.

balanced chemical equation:  $CH_4 + 2O_2 \rightarrow 2H_2O + CO_2$ 

continued

# The following strategies can help you translate a word equation into a skeleton equation.

- ◆ A chemical symbol is used for nearly all elements when they are not in a compound.
- ◆ Three common compounds containing hydrogen that you should memorize are methane (CH<sub>4</sub>), ammonia (NH<sub>3</sub>), and water (H<sub>2</sub>O).

There are seven common diatomic elements, all of which are non-metals. These are hydrogen, nitrogen, oxygen, fluorine, chlorine, bromine, and iodine. When they occur alone (not in a compound), they are written as  $H_2$ ,  $O_2$ ,  $F_2$ ,  $Br_2$ ,  $I_2$ ,  $N_2$ , and  $Cl_2$ . You can use the word "HOFBrINCl" to remember them. If an element occurs alone and is not diatomic, no subscript is used. For example, in a chemical equation, oxygen is written as  $O_2$  when it occurs alone, while lead is written as Pb.

# The following strategies can help you balance a skeleton equation.

- ♦ Balance compounds first and single elements last.
- ◆ If you place a coefficient in front of a formula, be sure to balance all the atoms of that formula before moving on.
- ◆ Add coefficients only in front of formulas. Do not change subscripts.
- ♦ When oxygen or hydrogen appears in more than one formula on the reactant side or the product side of the chemical equation, balance oxygen and hydrogen last.
- ◆ You can often treat polyatomic ions, such as SO<sub>4</sub><sup>2-</sup>, as a unit.
- ◆ If an equation is balanced by using half a molecule (i.e., ½ O₂), you must double all coefficients so that they are all integers.
- ◆ When you are finished, perform a final check to be sure that all elements are balanced.

Use with textbook pages 206-211.

## **Balancing** equations

Starting with the skeleton equations, balance the following equations by adding coefficients where appropriate.

1. 
$$H_2 + F_2 \to HF$$

2. 
$$\operatorname{Sn} + \operatorname{O}_2 \to \operatorname{SnO}$$

3. 
$$MgCl_2 \rightarrow Mg + Cl_2$$

4. 
$$KNO_3 \rightarrow KNO_2 + O_2$$

5. 
$$BN + F_2 \rightarrow BF_3 + N_2$$

**8.** 
$$NH_3 + O_2 \rightarrow N_2 + H_2O$$

**9.** 
$$V_2O_5 + Ca \rightarrow CaO + V$$

**10.** 
$$C_9H_6O_4 + O_2 \rightarrow CO_2 + H_2O$$

11. 
$$H_2S + PbCl_2 \rightarrow PbS + HCl$$

**12.** 
$$C_3H_7OH + O_2 \rightarrow CO_2 + H_2O$$

13. 
$$Zn + CuSO_4 \rightarrow Cu + ZnSO_4$$

**14.** 
$$C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O$$

**15.** 
$$C_2H_5OH + O_2 \rightarrow CO_2 + H_2O$$

**16.** Al + 
$$H_2SO_4 \rightarrow H_2 + Al_2(SO_4)_3$$

17. 
$$\operatorname{FeCl}_3 + \operatorname{Ca(OH)}_2 \to \operatorname{Fe(OH)}_3 + \operatorname{CaCl}_2$$

**18.** 
$$Pb(NO_3)_2 + K_2CrO_4 \rightarrow PbCrO_4 + KNO_3$$

**19.** 
$$Cd(NO_3)_2 + (NH_4)_2S \rightarrow CdS + NH_4NO_3$$

**20.** 
$$Ca(OH)_2 + NH_4Cl \rightarrow NH_3 + CaCl_2 + H_2O$$

**Section 4.3** 

Use with textbook pages 202-211.

## Word equations

Write the skeleton equation for each of the following reactions. Then balance each of the following chemical equations.

- 1. hydrogen + oxygen  $\rightarrow$  water
- 2. iron(III) oxide + hydrogen  $\rightarrow$  water + iron
- 3. sodium + water → sodium hydroxide + hydrogen
- **4.** calcium carbide + oxygen  $\rightarrow$  calcium + carbon dioxide
- **5.** potassium iodide + chlorine  $\rightarrow$  potassium chloride + iodine
- **6.** chromium + tin(IV) chloride  $\rightarrow$  chromium(III) chloride + tin
- 7. magnesium + copper(II) sulphate → magnesium sulphate + copper
- 8. zinc sulphate + strontium chloride → zinc chloride + strontium sulphate
- 9. ammonium chloride + lead(III) nitrate → ammonium nitrate + lead(III) chloride
- **10.**iron(III) nitrate + magnesium sulphide → iron(III) sulphide + magnesium nitrate
- 11. aluminum chloride + sodium carbonate → aluminum carbonate + sodium chloride
- **12.** sodium phosphate + calcium hydroxide → sodium hydroxide + calcium phosphate

Use with textbook pages 202-203, 206-211.

## Chemical reactions and chemical equations

Rewrite the following sentences as chemical word equations. Then write the skeleton equation and balance the equation.

Date

| 1. | Iron combines with oxygen to form rust, which is also known as iron(II) oxide.                                                                                     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Word equation:Balanced equation:                                                                                                                                   |
| 2. | A solution of hydrogen chloride reacts with sodium carbonate to produce carbon dioxide, sodium chloride, and water.                                                |
|    | Word equation:Balanced equation:                                                                                                                                   |
| 3. | When aluminum metal is exposed to oxygen, a metal oxide called aluminum oxide is formed.                                                                           |
|    | Word equation:Balanced equation:                                                                                                                                   |
| 4. | Water reacts with powered sodium oxide to produce a solution of sodium hydroxide.                                                                                  |
|    | Word equation:Balanced equation:                                                                                                                                   |
| 5. | Hydrogen gas reacts with nitrogen trifluoride gas to form nitrogen gas and hydrogen fluoride.                                                                      |
|    | Word equation:                                                                                                                                                     |
| 6. | Chromium(III) sulphate reacts with potassium carbonate to form chromium(III) carbonate and potassium sulphate.                                                     |
|    | Word equation:Balanced equation:                                                                                                                                   |
| 7. | Potassium chlorate when heated becomes oxygen gas and potassium chloride.                                                                                          |
|    | Word equation:Balanced equation:                                                                                                                                   |
| 8. | A piece of metallic zinc is placed in a blue solution of copper(II) sulphate. A reddish brown layer of metallic copper forms in a clear solution of zinc sulphate. |
|    | Word equation:                                                                                                                                                     |

Use with textbook pages 202-211.

### Chemical equations

Match the Term on the left with the best Descriptor on the right. Each Descriptor may be used only once.

| useu only once.                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Term                                                                                                           | Descriptor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 1 product 2 reactant 3 coefficient 4 word equation 5 skeleton equation 6 chemical reaction 7 chemical equation | <ul> <li>A. a chemical that reacts in a chemical reaction</li> <li>B. a chemical that forms in a chemical reaction</li> <li>C. a chemical change in which new substances are formed</li> <li>D. a chemical equation that is written using chemical names</li> <li>E. an integer placed in front of a formula in a chemical equation</li> <li>F. a chemical equation that is written using chemical formulas</li> <li>G. a set of chemical formulas that identify the reactants and products in a chemical reaction</li> </ul> |  |  |  |

**8.** Which of following describes the law of conservation of mass?

| I.   | The mass is conserved in a chemical reaction.                                                                                            |
|------|------------------------------------------------------------------------------------------------------------------------------------------|
| II.  | The total mass of the products is equal to the total mass of the reactants in a chemical reaction.                                       |
| III. | The total number of each kind of atom at the start of the reaction is equal to the total number of each kind of atom after the reaction. |

- A. I and II only
- **B.** I and III only
- **C.** II and III only
- **D.** I, II, and III

- **9.** How many oxygen atoms are there in the compound lead(IV) bisulphate, Pb(HSO<sub>4</sub>)<sub>4</sub>?
  - **A.** 2
- **C.** 8
- **B.** 4
- **D.** 16

**10.** Which of the following are diatomic elements?

| I.   | iodine   |
|------|----------|
| II.  | nitrogen |
| III. | hydrogen |

- **A.** I and II only
- **C.** II and III only
- **B.** I and III only
- **D.** I, II, and III

Use the following unbalanced equation to answer question 11.

$$PCl_5 + H_2O \rightarrow HCl + H_3PO_4$$

- **11.** Which of the following sets of coefficients will balance the equation?
  - **A.** 1, 4, 5, 1
- **C.** 1, 3, 5, 2
- **B.** 1, 5, 4, 1
- **D.** 1, 4, 2, 1
- **12.** A solution of sodium sulphide is mixed with a solution of copper(II) nitrate. A precipitate of copper sulphide is formed in a solution of sodium nitrate. What are the reactants in this chemical reaction?
  - A. Na<sub>2</sub>S and CuS
  - **B.** CuS and NaNO<sub>3</sub>
  - C. Na<sub>2</sub>S and Cu(NO<sub>3</sub>)<sub>2</sub>
  - **D.** Na<sub>2</sub>SO<sub>4</sub> and Cu<sub>2</sub>NO<sub>3</sub>
- **13.** A piece of aluminum metal is placed in a solution of sulphuric acid, H<sub>2</sub>SO<sub>4</sub>. A compound, aluminum sulphate, forms and bubbles are seen going to the surface. What type of gas formed during this reaction?
  - A. oxygen
- **C.** carbon dioxide
- **B.** hydrogen
- **D.** carbon monoxide