Section 6.1 Types of Chemical Reactions Check Your Understanding

Checking Concepts

- 1. Identify each of the following chemical reactions as synthesis, decomposition, single replacement, double replacement, neutralization (acid-base), or combustion.
 - (a) HCI + KOH \rightarrow KCI + H₂O
 - (b) S₈ + 12O₂ → 8SO₃
 - (c) $(NH_4)_2CO_3 + Ca(NO_3)_2 \rightarrow 2NH_4NO_3 + CaCO_3$
 - (d) $N_2 + 3Zn \rightarrow Zn_3N_2$
 - (e) $C_4H_8 + 6O_2 \rightarrow 4CO_2 + 4H_2O$
 - (f) $Pb(NO_3)_2 + 2KI \rightarrow PbI_2 + 2KNO_3$
 - (g) $Zn + 2HCI \rightarrow ZnCI_2 + H_2$
 - (h) $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$
 - (i) 2HF \rightarrow H₂ + F₂
 - (j) $2Au(NO_3)_3 + 3Cu \rightarrow 2Au + 3Cu(NO_3)_2$

Understanding Key Ideas

- 2. Combustion and single replacement reactions both involve an element reacting with a compound. How can you tell the difference between these two reactions by looking only at the reactants?
- 3. No classification system is perfect. Find an example in this chapter of a chemical reaction that could be classified in more than one way.
- 4. Classify each of the following reactions, and write balanced formula equations for them.

(a) sodium + oxygen \rightarrow sodium oxide

- (b) sodium sulphate + calcium chloride \rightarrow sodium chloride + calcium sulphate
- (c) propane (C_3H_8) + oxygen \rightarrow carbon dioxide + water
- (d) sulphuric acid + potassium hydroxide → potassium sulphate + water
- (e) aluminum chloride \rightarrow aluminum + chlorine
- (f) cadmium + gold(III) nitrate → cadmium nitrate + gold
- (g) strontium hydroxide + lead(II) bromide \rightarrow strontium bromide + lead(II) hydroxide
- (h) glucose $(C_6H_{12}O_6)$ + oxygen \rightarrow carbon dioxide + water
- (i) nitrogen + oxygen \rightarrow dinitrogen trioxide
- (j) nitric acid + zinc \rightarrow zinc nitrate + hydrogen

- 5. Classify each reaction, and write the formula of each product or products. Balance the equation.
 - (a) __Na + __N₂ →
 - (b) $_AIF_3 \rightarrow$
 - (c) $_CuSO_4 + _AI \rightarrow$
 - (d) $_Cal_2 + _Pb(NO_3)_2 \rightarrow$
 - (e) $_C_4H_{10} + _O_2 \rightarrow$
 - (f) $__AgNO_3 + __NaBr \rightarrow$
 - (g) $_CsI + _Cl_2 \rightarrow$
 - (h) __HCI + __NaOH →
 - (i) $__K_2Cr_2O_7 + __AgNO_3 \rightarrow$
 - (j) $_C_5H_{10}O_5 + _O_2 \rightarrow$
- 6. Write the balanced formula equation for the synthesis of iron(III) chloride from its elements.

When classifying a reaction, why might it *not* be helpful to consider whether the reaction produces water?