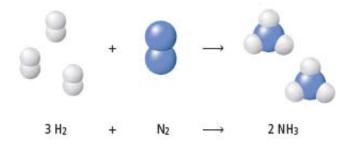
Section 4.3 Chemical Equations Check Your Understanding



Checking Concepts

1. Most commercial trucks use diesel fuel. Consider the following reaction that occurs during the combustion of diesel fuel.

heptane + oxygen
$$\rightarrow$$
 carbon dioxide + water $C_7H_{16} + 11O_2 \rightarrow 7CO_2 + 8H_2O$

- (a) List the names of the reactants.
- (b) Give the formulas of the products.
- (c) What is the coefficient of the carbon dioxide?
- (d) What is the meaning of the + symbol on the left side of the equation?
- 2. Study the following diagram, and then write a skeleton equation for the reaction it represents. A white circle represents an H atom. A blue circle represents an N atom.

Understanding Key Ideas

- 3. Balance the following skeleton equations.
 - (a) $_AI + _F_2 \rightarrow _AIF_3$
 - (b) $_PbCI_4 + __K_3PO_4 \rightarrow __KCI + __Pb_3(PO_4)_4$
 - (c) $\underline{Br_2} + \underline{Fel_3} \rightarrow \underline{I_2} + \underline{FeBr_3}$
 - (d) $_{Na_2CO_3} + _{Cr(NO_3)_3} \rightarrow _{NaNO_3} + _{Cr_2(CO_3)_3}$
 - (e) $\underline{M}n + \underline{I}_2 \rightarrow \underline{M}nI_4$
 - (f) $C_2H_6 + O_2 \rightarrow CO_2 + H_2O$
 - (g) $K_2SO_4 + AgNO_3 \rightarrow Ag_2SO_4 + KNO_3$
 - (h) $Ca(OH)_2 + HCI \rightarrow CaCI_2 + H_2O$
 - (i) $_Mg_3N_2 \rightarrow _Mg + _N_2$
 - (j) $_$ Fe + $_$ CuCl₂ \rightarrow $_$ FeCl₃ + $_$ Cu
- 4. Write skeleton equations for the following chemical reactions and then balance them. Be sure to check your formulas carefully before you begin to balance.
 - (a) lithium phosphate + magnesium sulphate → lithium sulphate + magnesium phosphate
 - (b) zinc iodide + copper(I) nitrate → zinc nitrate + copper(I) iodide
 - (c) mercury(II) nitrate + sodium hydrogen carbonate → sodium nitrate + mercury(II) hydrogen carbonate

- (d) nickel(III) iodide and iron(II) sulphide $\rightarrow nickel(III)$ sulphide + iron(II) iodide
- (e) aluminum hydroxide + hydrogen fluoride → aluminum fluoride + water
- (f) hydrogen chloride + barium hydroxide → barium chloride + water
- (g) calcium bromide + potassium carbonate → calcium carbonate + potassium bromide
- (h) titanium(III) fluoride + cesium sulphite → cesium fluoride + titanium(III) sulphite
- (i) barium sulphate + sodium hydroxide → sodium sulphate + barium hydroxide
- (j) calcium chloride + potassium → potassium chloride + calcium
- (k) hydrogen nitrate + strontium carbonate → strontium nitrate

Pause and Reflect

The law of conservation of mass was developed after many experiments consistently showed that mass is neither gained nor lost during a chemical reaction. How does our understanding of atoms help explain why mass does not change during chemical reactions?